Home Blog Page 3799

Robots-Weblog | Der neue Bildungsroboter MAKEBLOCK mBot2 lässt sich dank KI sogar über die Mimik steuern und gibt Gefühle wieder

0


Der mBot2 Programmierroboter löst nach 8 Jahren den weltweit erfolgreichen mBot1 ab und begeistert mit topaktueller Sensorik, neuen Motoren und einem brandneuen KI-Steuerboard im vertrauten Design. Für Kinder, Lehrer und Tüftler, die spielend mehr über Informatik, MINT, IoT, AI und blockbasiertes Coding lernen wollen 

Ubstadt-Weiher, 29.04.2021 – In den vergangenen acht Jahren hat der Bildungsroboter mBot von MAKEBLOCK weltweit Millionen von Kindern, Schülern, Lehrern und angehenden Programmieren nicht nur komplexe MINT (Mathematik, Informatik, Naturwissenschaft, Technik)-Zusammenhänge spielerisch vermittelt, sondern auch nach Abschluss erfolgreicher Missionen ein Lächeln ins Gesicht gezaubert. Und die Erfolgsgeschichte geht mit dem neuen mBot2 weiter: Unter der behutsam modifizierten Hülle, die jetzt aus robustem Aluminium besteht, ist geballte modernste Technologie verpackt, die unzählige neue Programmierungs- und Anwendungsmöglichkeiten ermöglicht. Am auffälligsten sind auf den ersten Blick die Ultraschallsensoren der nächsten Technology, die einem in strahlendem Blau anblicken. Wer kann diesem verführerischen Blick schon widerstehen? Die blauen „Augen“ sind aber nicht nur für die präzise Entfernungsmessung geeignet, sie vermitteln mit Hilfe der steuerbaren Ambient-Beleuchtung auch Emotionen. Der mBot2 sucht geradezu den Blickkontakt zu den kleinen Programmierern, denn durch die KI-Bilderkennung lässt sich z.B. die Geschwindigkeit über den Gesichtsausdruck steuern.

Das „Gehirn“ des mBot2 ist der leistungsfähige Mikrocontroller CyberPi mit integriertem Farbdisplay, Lautsprecher, Mikrofon, Lichtsensor, Gyroskop, RGB-Anzeige und mehr. Das eingebaute WiFi- und Bluetooth-Modul ermöglicht die Verbindung mit dem Web für smarte Funktionen wie Spracherkennung, Sprachsynthese, LAN-Broadcast und das Hochladen von Daten in Google Sheets. Der mBot2 ist der aktuell spannendste Spielzeugroboter zum Eigenbau (nur ein Schraubenzieher erforderlich), vielseitig erweiterbar und mit großer Gestaltungsfreiheit beim Programmieren, der auch das Innenleben eines Roboters erfahrbar macht: Ab sofort für eine UVP von 139.- EUR (inkl. MwSt.) im On-line Store von Solectric erhältlich.

mBot2 kommuniziert mit seiner Umwelt – powered by CyberPi

Einer der wichtigsten Neuerungen des mBot2 im Vergleich zur Vorgängerversion ist seine Netzwerkfähigkeit mit Hilfe des CyberPi Mikrocomputers. Das programmierbare Kraftpaket ist in Kombination mit dem mBlock-Codierungseditor eine praktische Lernhilfe für die Informatik und AI-Ausbildung und setzt dem Spieltrieb der Kinder kaum Grenzen. Lehrer haben die Möglichkeit, mit Google Classroom z.B. einen interaktiven und fortschrittlichen Unterricht durchzuführen, bei dem mehrere mBot2 über das Web miteinander kommunizieren. So lassen sich die Daten von verschiedenen Geräten sammeln, visualisieren und verarbeiten und erste Programmierungen für KI- und IoT (Web of Issues) -Anwendungen erlernen. 

„Der kleine Bildungsroboter mBot2 macht die Programmierung zum Kinderspiel und regt die Kinder zum kreativen und interaktiven Spielen an“, erklärt Alexander Hantke, Head of Solectric Schooling. „Für Kinder, die Interesse an Elektronik, Robotik und Programmierung haben, ist der mBot2 das ideale Geschenk. Gerade wenn Kinder erkennen, wie sich auch andere Familienmitglieder für das Thema begeistern, werden sie oft davon mitgerissen. Wichtig ist aber auch, dass man Kinder eigene Fehler mit dem mBot2 machen lässt, um den Spaßfaktor über lange Zeit hoch zu halten.“

Der CyberPi Controller mit 1,44“ Vollfarben-Show zur Anzeige von Daten, Bildern und anderen Informationen kann nicht nur als Rechenzentrum des Roboters, sondern auch als Handheld-Gerät wie ein Recreation Controller oder Monitoring-Gerät eingesetzt werden. Der integrierte Speicher und das Betriebssystem ermöglichen es, bis zu acht Programme im Controller zu speichern und zu verwalten. 

Richtig aufregend wird es, wenn durch das Verbinden mehrerer mBots2 ein lokales Netzwerk von Robotern erstellt wird, die untereinander kommunizieren, Informationen austauschen und Aufgaben ausführen. Sind die mBot2 mit dem Web verbunden, können sie erweiterte Funktionen ausführen wie Spracherkennung, sich mit einer Cloud verbinden oder Wetterinformationen abrufen. Maximale Präzision in der Steuerung der Rotation, Geschwindigkeit und Place der Räder und des Roboters versprechen das im CyberPi verbaute 3-Achsen-Gyroskop und der Beschleunigungssensor für die optischen Encoder-Motoren, die über ein Drehmoment von 1,5 kg-cm, eine max. Geschwindigkeit von 200 U/min und eine Erfassungsgenauigkeit von 1° verfügen.

mBlock – die leistungsstarke Coding-Plattform für einfachen Einstieg in den Informatik- und MINT-Unterricht

Der programmierbare Roboter hilft Kindern, das Programmieren Schritt für Schritt durch interaktive Drag-and-Drop-Software program zu lernen. Mit den umfangreichen Tutorials und den mitgelieferten Projektfällen können die jungen Entdecker mit der grafischen Programmierung beginnen und mit einem Klick die Programmiersprachen Scratch oder Arduino C verwenden. Die mBlock-Software program ist kompatibel mit Home windows, MacOS, Linux sowie Chromebook und unterstützt auch Android und iOS. Zusammen mit mBlock wird der mBot2 zu einem leistungsstarken Werkzeug, um mit fortschrittlichen Technologien wie KI, IoT und Knowledge Science in Berührung zu kommen. Schüler*innen beginnen mit blockbasierter Codierung und gehen mit zunehmender Erfahrung zur Python-Codierung über. Der Python Editor unterstützt die jungen Programmierer*innen mit smarten Funktionen wie der intelligenten Autovervollständigung und Syntaxhervorhebung.

Erweiterbar mit mBuild-Modulen und Makeblock-Bauteilen

Der mBot2 kann den Aktionsradius mit mehr als 60 verschiedenen mBuild-Modulen erweitern und bis zu 10 verschiedene Sensoren, Motoren, LEDs oder andere Komponenten gleichzeitig in Reihe schalten. In jedem Modul ist eine Micro-Controller Unit (MCU) eingebaut, wodurch die Module ohne ein vorheriges Trennen oder eine bestimmte Reihenfolge verbunden werden können. Inzwischen sind für diesen programmierbaren Roboter für Kinder auch Zusatzpakete erhältlich (nicht im Lieferumfang enthalten), mit denen Programmieren, Robotik, Elektronik und Konstruktion gelehrt werden, während die Schüler durch praktisches Lernen interaktive Missionen programmieren und ausführen können.  

Der mBot2 ist mit einem 2.500 mAh Akku im sog. mBot2 Defend ausgestattet, der sich bequem über ein USB C-Kabel aufladen lässt. Das mBot2 Defend verfügt zudem über zwei Anschlüsse für Encoder-Motoren, zwei Anschlüsse für Gleichstrommotoren und vier Anschlüsse für Servos. Einige der Servo-Anschlüsse können mit LED-Streifen und analogen/digitalen Arduino-Sensoren verbunden werden.

Weitere Informationen erhalten Sie im On-line-Store von Solectric: https://store.solectric.de/instructional/makeblock/mbot/3729/makeblock-mbot-2?c=4807



Apple’s September iPhone occasion: Date, time, and what is going to Apple launch

0


Google simply confirmed Apple Intelligence the pitfalls of letting generative AI create art work

0



When Apple introduced Apple Intelligence as a part of the iOS 18 unveiling at WWDC in June, it confirmed that one of many new options that fall below that umbrella will contain photos created by generative AI. However whereas a number of the Apple Intelligence options are already out there within the iOS 18.1 developer beta, there has to date been no signal of the promised image-based generative AI magic. And Google may need simply proven why Apple is correct to hold fireplace.

Following the launch of the Google Pixel 9 sequence of gadgets, individuals have been placing Pixel Studio by its paces. It is an app that makes use of Google’s AI smarts to create photos, as you may think, primarily based on textual content prompts supplied by customers. However whereas Google has after all put guardrails in place to try to forestall individuals from misusing the know-how, some report that these guardrails aren’t doing such a superb job at … guarding.



WeLiveSecurity named Greatest Cybersecurity Vendor Weblog!


Digital Safety

The outcomes of the 2024 European Cybersecurity Blogger Awards are in and the winner of the Greatest Cybersecurity Vendor Weblog is… drumroll, please… WeLiveSecurity!

WeLiveSecurity wins Best Cybersecurity Vendor Blog award!

We’re delighted to announce that WeLiveSecurity has been named the Greatest Cybersecurity Vendor Weblog at this 12 months’s version of the European Cybersecurity Blogger Awards. It is an honor to have the collective expertise and work of ESET’s safety researchers and writers acknowledged with the accolade.

There have been many wonderful nominations this 12 months – our congratulations to all different winners and nominees throughout the occasion’s 11 classes. We additionally owe an enormous thank-you to you, our readers, to your ongoing assist.

The awards had been introduced in the course of the Safety Bloggers’ Meetup, an occasion held alongside the Infosecurity Europe convention in London final week. Annually, this gathering honors the efforts of safety bloggers, podcasters, journalists, pundits and social media personalities who assist safety practitioners and the broader public sustain with the most recent developments within the trade.

As you may think about, the competitors was really stiff. The winners had been decided by a mixture of public votes and a panel of judges, recognizing the impression that the work of the nominees has on each the safety group and most of the people.

Certainly, that is additionally a wonderful alternative to thanks, our readers, to your assist – it means the world to us and encourages us to maintain pushing the envelope. We stay up for bringing you extra top-tier content material and doing our half in serving to you and your group keep protected from digital threats.

For individuals who might not be acquainted, right here’s a fast recap of WeLiveSecurity’s journey to this point:

Launched in 2013 by ESET, WeLiveSecurity has developed right into a premier supply of cybersecurity analysis and insights. Obtainable in 5 languages, the weblog’s content material spans the most recent discoveries from ESET’s menace researchers to safety recommendation for organizations of varied sizes all the best way to sensible ideas for on a regular basis customers.

Our crew of safety professionals and writers actually lives and breathes safety because it goals to assist our readers make sense of the ever-evolving safety panorama. This entails tapping into the experience of ESET’s safety researchers who work “within the trenches” and allow us to give you a novel glimpse into a number of the most subtle threats lurking within the digital realm.

Enhance the resilience of Amazon Managed Service for Apache Flink utility with system-rollback characteristic

0


“All the pieces fails on a regular basis” – Werner Vogels, CTO Amazon

Though prospects all the time take precautionary measures after they construct purposes, utility code and configuration errors can nonetheless occur, inflicting utility downtime. To mitigate this, Amazon Managed Service for Apache Flink has constructed a brand new layer of resilience by permitting prospects to go for the system-rollback characteristic that can seamlessly revert the appliance to a earlier operating model, thereby bettering utility stability and excessive availability.

Apache Flink is an open supply distributed processing engine that provides highly effective programming interfaces for stream and batch processing. It additionally provides first-class assist for stateful processing and occasion time semantics. Apache Flink helps a number of programming languages, together with Java, Python, Scala, SQL, and a number of APIs with completely different ranges of abstraction. These APIs can be utilized interchangeably in the identical utility.

Managed Service for Apache Flink is a totally managed, serverless expertise in operating Apache Flink purposes, and it now helps Apache Flink 1.19.1, the newest launched model of Apache Flink on the time of this writing.

This put up explores easy methods to use the system-rollback characteristic in Managed Service for Apache Flink.We focus on how this performance improves your utility’s resilience by offering a extremely accessible Flink utility. By an instance, additionally, you will discover ways to use the APIs to have extra visibility of the appliance’s operations. This is able to assist in troubleshooting utility and configuration points.

Error eventualities for system-rollback

Managed Service for Apache Flink operates below a shared accountability mannequin. This implies the service owns the infrastructure to run Flink purposes which are safe, sturdy, and extremely accessible. Prospects are chargeable for ensuring utility code and configurations are appropriate. There have been instances the place updating the Flink utility failed because of code bugs, incorrect configuration, or inadequate permissions. Listed here are a number of examples of frequent error eventualities:

  1. Code bugs, together with any runtime errors encountered. For instance, null values will not be appropriately dealt with within the code, leading to NullPointerException
  2. The Flink utility is up to date with parallelism larger than the max parallelism configured for the appliance.
  3. The appliance is up to date to run with incorrect subnets for a digital personal cloud (VPC) utility which leads to failure at Flink job startup.

As of this writing, the Managed Service for Apache Flink utility nonetheless reveals a RUNNING standing when such errors happen, even though the underlying Flink utility can’t course of the incoming occasions and get better from the errors.

Errors can even occur throughout utility auto scaling. For instance, when the appliance scales up however runs into points restoring from a savepoint because of operator mismatch between the snapshot and the Flink job graph. This could occur when you did not set the operator ID utilizing the uid methodology or modified it in a brand new utility.

You might also obtain a snapshot compatibility error when upgrading to a brand new Apache Flink model. Though stateful model upgrades of Apache Flink runtime are typically suitable with only a few exceptions, you possibly can discuss with the Apache Flink state compatibility desk and Managed Service for Apache Flink documentation for extra particulars.

In such eventualities, you possibly can both carry out a force-stop operation, which stops the appliance with out taking a snapshot, or you possibly can roll again the appliance to the earlier model utilizing the RollbackApplication API. Each processes want buyer intervention to get better from the problem.

Computerized rollback to the earlier utility model

With the system-rollback characteristic, Managed Service for Apache Flink will carry out an computerized RollbackApplication operation to revive the appliance to the earlier model when an replace operation or a scaling operation fails and also you encounter the error eventualities mentioned beforehand.

If the rollback is profitable, the Flink utility is restored to the earlier utility model with the newest snapshot. The Flink utility is put right into a RUNNING state and continues processing occasions. This course of ends in excessive availability of the Flink utility with improved resilience below minimal downtime. If the system-rollback fails, the Flink utility will likely be in a READY state. If so, it is advisable repair the error and restart the appliance.

Nevertheless, if a Managed Service for Apache Flink utility is began with utility or configuration points, the service won’t begin the appliance. As a substitute, it would return within the READY state. This can be a default habits no matter whether or not system-rollback is enabled or not.

System-rollback is carried out earlier than the appliance transitions to RUNNING standing. Computerized rollback won’t be carried out if a Managed Service for Apache Flink utility has already efficiently transitioned to RUNNING standing and later faces runtime points corresponding to checkpoint failures or job failures. Nevertheless, prospects can set off the RollbackApplication API themselves in the event that they need to roll again on runtime errors.

Right here is the state transition flowchart of system-rollback.

Amazon Managed Service for Apache Flink State Transition

System-rollback is an opt-in characteristic that wants you to allow it utilizing the console or the API. To allow it utilizing the API, invoke the UpdateApplication API with the next configuration. This characteristic is obtainable to all Apache Flink variations supported by Managed Service for Apache Flink.

Every Managed Service for Apache Flink utility has a model ID, which tracks the appliance code and configuration for that particular model. You may get the present utility model ID from the AWS console of the Managed Service for Apache Flink utility.

aws kinesisanalyticsv2 update-application 
	--application-name sample-app-system-rollback-test 
	--current-application-version-id 5 
	--application-configuration-update "{"ApplicationSystemRollbackConfigurationUpdate": {"RollbackEnabledUpdate": true}}" 
	--region us-west-1

Utility operations observability

Observability of the appliance variations change is of utmost significance as a result of Flink purposes may be rolled again seamlessly from newly upgraded variations to earlier variations within the occasion of utility and configuration errors. First, visibility of the model historical past will present chronological details about the operations carried out on the appliance. Second, it would assist with debugging as a result of it reveals the underlying error and why the appliance was rolled again. That is in order that the problems may be fastened and retried.

For this, you will have two extra APIs to invoke from the AWS Command Line Interface (AWS CLI):

  1. ListApplicationOperations – This API will checklist all of the operations, corresponding to UpdateApplication, ApplicationMaintenance, and RollbackApplication, carried out on the appliance in a reverse chronological order.
  2. DescribeApplicationOperation – This API will present particulars of a particular operation listed by the ListApplicationOperations API together with the failure particulars.

Though these two new APIs will help you perceive the error, you also needs to discuss with the AWS CloudWatch logs to your Flink utility for troubleshooting assist. Within the logs, yow will discover extra particulars, together with the stack hint. When you establish the problem, repair it and replace the Flink utility.

For troubleshooting info, discuss with documentation .

System-rollback course of circulation

The next picture reveals a Managed Service for Apache Flink utility in RUNNING state with Model ID: 3. The appliance is consuming knowledge efficiently from the Amazon Kinesis Information Stream supply, processing it, and writing it into one other Kinesis Information Stream sink.

Additionally, from the Apache Flink Dashboard, you possibly can see the Standing of the Flink utility is RUNNING.

To exhibit the system-rollback, we up to date the appliance code to deliberately introduce an error. From the appliance most important methodology, an exception is thrown, as proven within the following code.

throw new Exception("Exception thrown to exhibit system-rollback");

Whereas updating the appliance with the newest jar, the Model ID is incremented to 4, and the appliance Standing reveals it’s UPDATING, as proven within the following screenshot.

After a while, the appliance rolls again to the earlier model, Model ID: 3, as proven within the following screenshot.

The appliance now has efficiently gone again to model 3 and continues to course of occasions, as proven by Standing RUNNING within the following screenshot.

To troubleshoot what went fallacious in model 4, checklist all the appliance variations for the Managed Service for Apache Flink utility: sample-app-system-rollback-test.

aws kinesisanalyticsv2 list-application-operations 
    --application-name sample-app-system-rollback-test 
    --region us-west-1

This reveals the checklist of operations achieved on Flink utility: sample-app-system-rollback-test

{
  "ApplicationOperationInfoList": [
    {
      "Operation": "SystemRollbackApplication",
      "OperationId": "Z4mg9iXiXXXX",
      "StartTime": "2024-06-20T16:52:13+01:00",
      "EndTime": "2024-06-20T16:54:49+01:00",
      "OperationStatus": "SUCCESSFUL"
    },
    {
      "Operation": "UpdateApplication",
      "OperationId": "zIxXBZfQXXXX",
      "StartTime": "2024-06-20T16:50:04+01:00",
      "EndTime": "2024-06-20T16:52:13+01:00",
      "OperationStatus": "FAILED"
    },
    {
      "Operation": "StartApplication",
      "OperationId": "BPyrMrrlXXXX",
      "StartTime": "2024-06-20T15:26:03+01:00",
      "EndTime": "2024-06-20T15:28:05+01:00",
      "OperationStatus": "SUCCESSFUL"
    }
  ]
}

Evaluation the main points of the UpdateApplication operation and be aware the OperationId. When you use the AWS CLI and APIs to replace the appliance, then the OperationId may be obtained from the UpdateApplication API response. To analyze what went fallacious, you should utilize OperationId to invoke describe-application-operation.

Use the next command to invoke describe-application-operation.

aws kinesisanalyticsv2 describe-application-operation 
    --application-name sample-app-system-rollback-test 
    --operation-id zIxXBZfQXXXX 
    --region us-west-1

This can present the main points of the operation, together with the error.

{
    "ApplicationOperationInfoDetails": {
        "Operation": "UpdateApplication",
        "StartTime": "2024-06-20T16:50:04+01:00",
        "EndTime": "2024-06-20T16:52:13+01:00",
        "OperationStatus": "FAILED",
        "ApplicationVersionChangeDetails": {
            "ApplicationVersionUpdatedFrom": 3,
            "ApplicationVersionUpdatedTo": 4
        },
        "OperationFailureDetails": {
            "RollbackOperationId": "Z4mg9iXiXXXX",
            "ErrorInfo": {
                "ErrorString": "org.apache.flink.runtime.relaxation.handler.RestHandlerException: Couldn't execute utility.ntat org.apache.flink.runtime.webmonitor.handlers.JarRunOverrideHandler.lambda$handleRequest$4(JarRunOverrideHandler.java:248)ntat java.base/java.util.concurrent.CompletableFuture.uniHandle(CompletableFuture.java:930)ntat java.base/java.util.concurrent.CompletableFuture$UniHandle.tryFire(CompletableFuture.java:907)ntat java.base/java.util.concurrent.CompletableFuture.postComplete(CompletableFuture.java:506)ntat java.ba"
            }
        }
    }
}

Evaluation the CloudWatch logs for the precise error info. The next code reveals the identical error with the whole stack hint, which demonstrates the underlying drawback.

Amazon Managed Service for Apache Flink did not transition the appliance to the specified state. The appliance is being rolled-back to the earlier state. Please examine the next error. org.apache.flink.runtime.relaxation.handler.RestHandlerException: Couldn't execute utility.
at org.apache.flink.runtime.webmonitor.handlers.JarRunOverrideHandler.lambda$handleRequest$4(JarRunOverrideHandler.java:248)
at java.base/java.util.concurrent.CompletableFuture.uniHandle(CompletableFuture.java:930)
at java.base/java.util.concurrent.CompletableFuture$UniHandle.tryFire(CompletableFuture.java:907)
...
...
...
Attributable to: java.lang.Exception: Exception thrown to exhibit system-rollback
at com.amazonaws.providers.msf.StreamingJob.most important(StreamingJob.java:101)
at java.base/jdk.inner.replicate.NativeMethodAccessorImpl.invoke0(Native Methodology)
at java.base/jdk.inner.replicate.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.inner.replicate.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.replicate.Methodology.invoke(Methodology.java:566)
at org.apache.flink.consumer.program.PackagedProgram.callMainMethod(PackagedProgram.java:355)
... 12 extra

Lastly, it is advisable repair the problem and redeploy the Flink utility.

Conclusion

This put up has defined easy methods to allow the system-rollback characteristic and the way it helps to reduce utility downtime in unhealthy deployment eventualities. Furthermore, we have now defined how this characteristic will work, in addition to easy methods to troubleshoot underlying issues. We hope you discovered this put up useful and that it supplied perception into easy methods to enhance the resilience and availability of your Flink utility. We encourage you to allow the characteristic to enhance resilience of your Managed Service for Apache Flink utility.

To be taught extra about system-rollback, discuss with the AWS documentation.


Concerning the creator

Subham Rakshit is a Senior Streaming Options Architect for Analytics at AWS primarily based within the UK. He works with prospects to design and construct streaming architectures to allow them to get worth from analyzing their streaming knowledge. His two little daughters maintain him occupied more often than not outdoors work, and he loves fixing jigsaw puzzles with them. Join with him on LinkedIn.